Categories
Articles General Materials Research Medicinal Science

Mendeley

The following video tutorial may be used for inserting the citations in manuscript using Mendeley program (a free software from Elsevier). More informative videos related to Mendeley will be made available on this page time to time. Users may join the ScienceIn group on Mendeley for importing articles of their interest and cite in their manuscript. The links are
> Materials Sciences Articles
> Medicinal Science Articles
> Social Sciences Articles

Categories
General Materials Research Medicinal Science

Nanobiotechnology and Biomaterials in Nuclear Medicine – special issue

Nuclear Medicine, a medical specialty involving the application of radioactive substances and magnetic materials in the diagnosis and treatment of disease have been highly successful in diagnosis of difficult to detect diseases and therapy of various dreaded diseases. Recently, there have been a tremendous research progress in development of newer methods, conjugates and pharmaceuticals for diagnosis and therapy using nanomaterials and nanomedicine approaches in radioactive materials.

The purpose of this special issue proposal is to summarize the recent advances in the field of new NanoMedicinal and Nanobiotechnological advances in development of probes and materials for potential molecular targets and understanding of their mechanism of actions, new radioconjugates development using nanobiomaterials, clinical evaluation and application of new Nano-radiopharmaceuticals, and new techniques/therapy development using Biomaterials. Recent progress will be covered through research articles, review articles and short communications.

The subtopics to be covered in this issue are (though not limited to):

NanoChemistry of new radioactive elements.
– Organic chemistry of Nano-radiopharmaceuticals, chelating agents and standalone Nano-radiopharmaceuticals.
– Progress in SPECT using Nanobiomaterials.
– Progress in Nano-Positron Emission Tomography (nanoPET).
– Application of nanoscience and nanotechnology to Nuclear Medicine.
– Identification of new therapeutic targets.
– Treatment advances of various diseases – cancer, infections, inflammations etc using nano-radiopharmaceuticals.
– Clinical studies and evaluation of nano-radiopharmaceuticals.
– Malarial/mycobacterial/microbial/viral diagnosis and therapy development using nano(bio)materials including biochemical aspects of nano-biomaterials.
– Therapeutic and diagnostic applications of new nano and biomaterials.
– New therapeutic policies and emerging targets for Nuclear nanoMedicine.
– New approaches adopted for the development of nanomedicine of new radiodiagnostic and radiotherapeutic molecules.
– Rational design and drug discovery-Structure-activity relationship (SAR).
NanoDrug Delivery of radiopharmaceuticals – application of different nanobiotechnology conjugates and systems in radiopharmaceuticals.
– Synthetic strategies of new radioactive conjugate molecules.
– Molecular self-assembly as drug delivery carriers of radiopharmaceuticals – Nanotechnology and Biotechnology.
– Environmental aspects, safety measures advances in nuclear medicine.

Provisional Schedule:

Manuscript submission: Submission open and ongoing now.
Issue Completion: August 2020.

Editors:

Dr. Anil Mishra
Dr. Anil Kumar Mishra
Scientist ‘G’ and Add Director,
Institute of Nuclear Medicine and Allied Science,
DRDO, Timarpur, Delhi. India
Dr. B.S. Chhikara,
University of Delhi
email: drbs @ aditi. du.ac.in

Nuclear and Nano-Medicine researchers are invited to submit their research / review article for this special issue. Manuscript should be prepared and submitted as per author guidelines provided on journal site.

Important Links:

Author Guidelines for preparation of manuscript:

Manuscript template (download): Download template MS word 2007-2010, Citation manager style files and other details are provided in author guidelines section on journal site.

http://thesciencein.org/author-guidelines-for-journal-of-nanomedicine section -nanomaterials-materials-nanoscience/

Manuscript Submission: Authors need to submit their manuscript on http://thesciencein.org/journal/index.php/jmns/about/submissions OR http://pubs.iscience.in/journal/index.php/cbl/about/submissions (India-regional site).

There is no fees for publication in special issue or journal.

Categories
General

Low-temperature microwave-assisted synthesis and antifungal activity of CoFe2O4 nanoparticles

Low-temperature microwave-assisted synthesis and antifungal activity of CoFe2O4 nanoparticles

urn:nbn:sciencein.jmns.2019v6.108

Published in Journal of Materials NanoScience

  • T. R. Ravikumar Naik Indian Institute of Science
  • Naveen Joshi Indian Institute of Science
  • S.A. Shivashankar Indian Institute of Science
  • P.J. Bindu Indian Institute of Science

Keywords: Microwave, cobalt ferrite, nanocrystalline, metal, complex

Abstract

Nanoparticle ferrite with chemical formula CoFe2O4 was prepared from the Co (II) and Fe (III) 3-acetyl-4-hydroxy-coumarin metal complexes by solution based one-pot microwave assisted technique. Single phase structure of CoFe2O4 ferrites nanoparticles was confirmed using FTIR, XRD, SEM, and EDX analysis. Transmission Electron Microscope (TEM) showed that the particle size of the samples in the range of (15 nm). The hysteresis studies showed ferromagnetic behaviour at room temperature. The antifungal activity of CoFe2O4 nanoparticle was investigated against A.flavus and A. niger by employing disc diffusion method. According to the results obtained, CoFe2O4 is a potential material for antifungal diseases. The CoFe2O4 nanoparticles could be readily separated from water solution after the disinfection process by applying an external magnetic field.

How to Cite Naik, T. R. R., Joshi, N., Shivashankar, S., & Bindu, P. (2019). Low-temperature microwave-assisted synthesis and antifungal activity of CoFe2O4 nanoparticles. Journal of Materials NanoScience, 6(2), 67-72.

Retrieved full text from http://pubs.thesciencein.org/journal/index.php/jmns/article/view/108

Categories
General

Haryana Vigyan Ratan Award 2019

It is a pride moment for ScienceIn family, editors, scientists and researchers that Dr. Rajender S Varma, the editor of JMNS and emeritus scientist, Environmental Protection Agency, USA has been awarded Haryana Vigyan Ratan Award (translation: Haryana Science Jewel Award) 2017 on February 28, 2019 at Haryana Raj Bhawan, Chandigarh. Dr. Varma has been given this recognition for his enormous research contribution in Green Chemistry, Catalysis, NanoScience-nanomaterials, nanochemistry, nanocatalysis. Prof. Rajender (Raj) S. Varma did Ph.D. from Delhi University in 1976. He is Editor of Journal of Materials NanoScience, advisory board member of several international journals and has published over 470 scientific papers and awarded 16 US Patents, 8 books, 27 book chapters and 3 encyclopedia contributions with over ~ 31,000 citations. He is highly accomplished researcher with high citations to his work having H -Index 96. Dr. Varma hail from a village in haryana (now in punjab). On receiving the award he said “It is a proud moment for a country boy”. It is a highest award from state government for scientists.

The Department of Science and Technology Haryana Government has instituted a highest honour for the contributions in field of scientific research with title “Haryana Vigya Ratan” to honor and acknowledge the contributions of researchers from Haryana and “Haryana Yuva Vigyan” Award for the recognition of young scientists.

Dr. Varma is editing a special section/issue on Nanochemistry and Nanocatalysis , researchers working in the field can contribute their research findings (research articles or review articles ) for consideration in the special section of the journal. More details available on Dr. Varma’s Nanochemistry special section Editor.


Dr. RS Varma receiving award from Governor of Haryana.

Haryana Vigyan Ratan Award Citation for Dr. RS Varma, Scientist EPA for contribution in Nanocatalysis, Green Chemistry
Categories
General

Conductive polymer nanocomposite enzyme immobilized biosensor for pesticide detection


Conductive polymer nanocomposite enzyme immobilized biosensor for pesticide detection

urn:nbn:sciencein.jmns.2019v6.84

  • Priyanka D Virutkar Rashtrasant Tukadoji Maharaj Nagpur University
  • Ashish P Mahajan Rashtrasant Tukadoji Maharaj Nagpur University
  • Bhavna H Meshram Rashtrasant Tukadoji Maharaj Nagpur University
  • Subhash B Kondawar Rashtrasant Tukadoji Maharaj Nagpur University

Keywords: Carbon nanotubes, Acetylcholinesterase, Pesticides, Biosensors

Abstract

Conductive carbon nanotubes based polyaniline/polypyrrole polymer nanocomposite (CNT-PANI-PPy) film was electrochemically synthesized on graphite electrode using cyclic voltammetry. CNT-PANI-PPy film formed a biocompatible environment to entrap enzyme molecule and used as biosensor for pesticide detection. This study shows that enzyme based conductive polymer nanocomposite film itself acts as a mediator. Carbon nanotubes promote electron transfer reactions in presence of Acetythiocholine chloride (ATCl) as a substrate at a lower potential and catalyzed the electrochemical oxidation of enzymatically formed thiocholine. Surface morphology was studied by scanning electron microscopy which shows a porous structure of the modified film beneficial for enzyme immobilization. Electrochemical behavior of the fabricated electrodes evaluated through cyclic voltammetry and electrochemical impedance spectroscopy. The detection of pesticide (acephate) was performed by chronoamperometry and the limit of detection (LOD) of acephate was found to be 0.007 ppm concentration which is quite low.

Full text at: http://pubs.thesciencein.org/journal/index.php/jmns/article/view/84